Your conditions: Hai-Qi Zhou
  • Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Nonlinear optics processes lie at the heart of photonics and quantum optics for their indispensable role in light sources and information processing. During the past decades, the three- and four-wave mixing ($\chi^{(2)}$ and $\chi^{(3)}$) effects have been extensively studied, especially in the micro-/nano-structures by which the photon-photon interaction strength is greatly enhanced. So far, the high-order nonlinearity beyond the $\chi^{(3)}$ has rarely been studied in dielectric materials due to their weak intrinsic nonlinear susceptibility, even in high-quality microcavities. Here, an effective five-wave mixing process ($\chi^{(4)}$) is synthesized for the first time, by incorporating $\chi^{(2)}$ and $\chi^{(3)}$ processes in a single microcavity. The coherence of the synthetic $\chi^{(4)}$ is verified by generating time-energy entangled visible-telecom photon-pairs, which requires only one drive laser at the telecom waveband. The photon pair generation rate from the synthetic process shows an enhancement factor over $500$ times upon intrinsic five-wave mixing. Our work demonstrates a universal approach of nonlinear synthesis via photonic structure engineering at the mesoscopic scale rather than material engineering, and thus opens a new avenue for realizing high-order optical nonlinearities and exploring novel functional photonic devices.

  • Operating Unit: National Science Library,Chinese Academy of Sciences
  • Production Maintenance: National Science Library,Chinese Academy of Sciences
  • Mail: eprint@mail.las.ac.cn
  • Address: 33 Beisihuan Xilu,Zhongguancun,Beijing P.R.China